ICASE

FINDING THE MINIMUM DISTANCE BETWEEN TWO CONVEX POLYGONS

Jacob T. Schwartz

Report No. 81-22 July 30, 1981

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING NASA Langley Research Center, Hampton, Virginia 23665

Operated by the

UNIVERSITIES SPACE

RESEARCH ASSOCIATION

(NASA-CR-185794) FINDING THE MINIMUM DISTANCE BETWEEN TWO CONVEX POLYGONS (ICASE): 10 p

N89-71370

Unclas 00/64 0224377

FINDING THE MINIMUM DISTANCE BETWEEN TWO CONVEX POLYGONS

Jacob T. Schwartz

Courant Institute of Mathematical Sciences,

New York University

ABSTRACT

An $0(\log^2 N)$ algorithm for determining the minimum distance between two polygons is given, together with a technique for improving its average-case performance to $0(\log N)$.

This report was prepared as a result of work performed under NASA Contracts No. NAS1-14472 and NAS1-15810 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1. Introduction

Suppose that a provisional path of coordinated motion has been planned for two rigid polyhedral bodies B_1 and B_2 in 3-space. Then there will exist functions $R_1(t)$, $R_2(t)$, $x_1(t)$, $x_2(t)$ of a parameter t designating time such that the set of points occupied by B_j at time t is $R_j(t)B_j+x_j(t)$. To verify the validity of the proposed motion, one can proceed as follows: find the minimum distance δ between the convex sets $R_1(t)B_1+x_1(t)$ and $R_2(t)B_2+x_2(t)$ for t=0. Let L be the diameter of the set B_2 , and from the known form of the functions R_1 , R_2 , x_1 , and x_2 find an ε sufficiently small so that

$$(|R_1^{-1}(t)R_2(t) - R_1^{-1}(0)R_2(0)| \cdot L + |x_1(t) + x_2(t) - x_1(0) - x_2(0)| < \delta,$$

for all $0 \le t \le \epsilon$. Then a collision between the moving bodies is impossible for this range of t; hence we can advance t from 0 to ϵ , and repeat this step. When successive steps of this kind have brought us from t=0 to some final value t^* , we can be sure that the planned path is collision-free.

To use this technique effectively, we need a fast algorithm for estimating the minimum distance between two polyhedra. The present note will address the problem of finding this distance, but only under two drastic simplifying assumptions, namely

- (i) B_1 and B_2 are assumed to be convex; and
- (ii) B_1 and B_2 are assumed to be two dimensional.

Assuming that B_1 and B_2 have a total of N vertices and are described by clockwise bounding segment lists of the standard kind, an $O(\log^2 N)$ algorithm for determining the minimum distance between B_1 and B_2 will be given. The related problem of finding the minimum distance between a

variable point x and a fixed convex body B is considered in [Shamos], where an $O(\log N)$ algorithm is given.

2. The algorithm

Hence let B_1 and B_2 be convex polygons. Write

$$B_1 + B_2 = \{x + y : x \in B_1, y \in B_2\}$$

and

$$-B = \{-x : x \in B\},$$

so that $B_1 + B_2$ is the so-called <u>Minkowski Sum</u> of B_1 and B_2 , and $B_1 - B_2 = B_1 + (-B_2)$. Our problem is to estimate the distance between the point x = 0 and the set $B_1 - B_2$; replacing B_2 by $-B_2$, it becomes that of estimating the distance from the origin to the convex set $B_1 + B_2$.

A fast (O(N)) procedure for finding $B_1 + B_2$ given B_1 and B_2 is described in [Najfeld], and is as follows:

- (a) The sides of $\rm\,B_1$ and $\rm\,B_2$ are available as circular lists arranged in increasing order of the angle $\,\theta$ that each side makes with the x axis. Merge these two lists into a single similarly ordered list L .
- (b) If a side S of B_2 (resp. B_1) lies between two successive sides S', S" of B_1 (resp. B_2) in this list, let c be the corner at which S and S' meet. Then S+c is a side of $B_1 + B_2$, and L lists these sides of $B_1 + B_2$ in their standard circular order. We will say in what follows that the side S+c of $B_1 + B_2$ comes from S (which is a side either of B_1 or of B_2), and that c is the corner of B_1 (resp. B_2) that matches the side S of B_2 (resp. B_1).

Our algorithm will apply this construction, but to attain $0(\log^2 N)$ performance will avoid forming the full list L. We proceed as follows.

- (i) The sides of any convex polygon B can be oriented so that the interior of B lies to their left. Oriented in this way, the sides of B fall into two (circularly) contiguous groups, one consisting of (vertically) ascending, the other of descending edges. It is clear that the ascending (resp. descending) edges of $B_1 + B_2$ come from the separate ascending (resp. descending) edges of B_1 and of B_2 .
- (ii) Let a point $\, x \,$ in the plane be given; we wish to determine whether it belongs to $\, B_1 + B_2 \,$, and if not, to find its minimum distance to $\, B_1 + B_2 \,$. First determine the highest (resp. lowest) corner $\, H_j \,$ L of each $\, B_j \,$; this can be done in time $\, O(\log N) \,$ by binary search of the sides of $\, B_j \,$. Then the highest and lowest corners of $\, B_1 + B_2 \,$ are $\, H_1 + H_2 \,$ and $\, L_1 + L_2 \,$ respectively. If $\, x \,$ does not lie in the vertical range bracketed by these two points, it is definitely not in $\, B_1 + B_2 \,$. If $\, x \,$ does lie in this vertical range, then a horizontal line drawn through $\, x \,$ will intersect exactly two sides of $\, B_1 + B_2 \,$, one an ascending, the other a descending side, and $\, x \,$ belongs to $\, B_1 + B_2 \,$ if and only if it lies between these two sides. To find these two intersections, we can start at the lowest corner $\, L_1 + L_2 \,$ of $\, B_1 + B_2 \,$, and perform a binary search of its ascending (resp. descending) sides. This can be done without actually forming the full collection of its sides, using a technique which we will now explain.
- (iii) Let the ascending sides of $B_1 + B_2$ be enumerated, in bottom-to-top order, as S_1, S_2, \ldots, S_n . At any moment during a binary search of these sides, we will be examining two of these sides S_i , S_k , and will need to examine a side S_i lying between them. We can suppose that the

side S' of B_1 (resp. B_2) from which each side S_j under examination comes is known, and that the corner c of B_2 (resp. B_1) matching S' is also known. For our binary search to retain logarithmic efficiency, we must be able to locate a side S_k between S_i and S_j such that k is at least (resp. most) a fixed fraction α (resp. $1-\alpha$) of the distance from i to j. This can be done as follows. Let S_i come from a side S' (of B_1 or B_2) numbered i', matched by a corner c'' (of B_2 or B_1) whose entering edge is numbered i'', and define S'', j' and j'', similarly from S_j . If S' and S'' are sides of the same polygon $(B_1$ or B_2), put

$$\Delta' = j' - i'$$
, $\Delta'' = j'' - i''$.

On the other hand, if S' and S" are sides of different polygons, put

$$\Delta' = j'' - i'$$
, $\Delta'' = j' - i''$.

In order to avoid detailed enumeration of tediously many cases, we will suppose that S' and S" are sides of different polygons; the treatment of the cases thereby ignored and of this case are similar.

If $\Delta' \geq \Delta''$, advance from side i' (of the polygon having S' as a side) halfway toward side j'' of this polygon. Let the side in this intermediate position be T, let its index be m, and find its matching corner c. Then T+c is a side of B_1+B_2 ; its index as a side of B_1+B_2 exceeds i by at least $\Delta'/2$ and by at most $\Delta'/2+\Delta''$. Hence m lies at least 1/4 and at most 3/4 of the way from i to j.

Similarly, if $\Delta'' > \Delta'$, advance from side i' (of the polygon having c' as a corner) halfway toward side i' of this polygon. Let the side in this intermediate position be T, its index be m, and its matching corner

be c. Then again T+c is a side of B_1+B_2 whose index is at least 1/4 and at most 3/4 of the way from i to j.

Locating the corner matching a given side can be done in time $0(\log\,N)$, so overall the binary search we have just described requires $0(\log^2N)$ time.

- (iv) The binary search will locate the two points of intersection of the horizontal line through x with the boundary of B_1+B_2 . If x lies between these points it is interior to B_1+B_2 , and we are finished. Otherwise x lies to the right or to the left of one of them. Suppose, for the sake of definiteness, that x lies to the right of B_1+B_2 , or, if x lies above (resp. below) the topmost (resp. bettom most) point of B_1+B_2 , that it lies to the left of this point. Then the point of B_1+B_2 lying closest to x lies on one of the ascending edges forming the left-hand part Q of the boundary of B_1+B_2 . We now begin to search for this edge. We start this search from an edge of B_1+B_2 visible from x. Such an edge is available in all cases, since if x lies above (resp. below) B_1+B_2 we have only to take the topmost (resp. bottom most) edge of Q.
- (v) To find the edge S^* of $B_1 + B_2$ containing the point Z closest to x, we start with an edge S visible from x and draw a line from x to the initial corner c_1 of S (note again that the edges of Q are oriented and point downward). Let c_2 be the other corner of S. If the angle xc_1c_2 is acute, then N lies on Q below c_1 ; if obtuse, then at or above c_1 . This observation enables the edge S containing Z to be located by binary search. As previously, this binary search procedure will run in time $O(\log^2 N)$. Suppose now that S contains Z. Then if xc_1c_2 is acute but xc_2c_1 is obtuse Z is

 c_2 ; if $x c_1 c_2$ is obtuse then Z is c_1 ; and otherwise Z is the foot of the perpendicular from x to S.

3. A technique for accelerating the expected speed of location of a point on a divided real axis

Like many other geometric algorithms, the algorithm sketched in the preceding pages makes repeated use of the following computational step:

Given a fixed increasing sequence of real numbers x_1, \dots, x_n , and a point x, locate the interval (x_i, x_{i+1}) in which x lies.

The normal technique for accomplishing this is simply to perform a binary search, which requires time $0(\log n)$.

We will now sketch an alternative approach which has the same worst case behavior, but (if the points \mathbf{x}_j are randomly distributed) will reduce the expected time needed to locate the desired interval to 0(1). This is simply to keep an auxiliary table T consisting of \mathbf{n}/α locations. To set up T, we divide the full range $(\mathbf{x}_1,\mathbf{x}_n)$ from the minimum to the maximum of the \mathbf{x}_i into $\alpha \mathbf{n}$ equal subintervals I, each of which corresponds to an entry E of T; E then stores the indices of the largest and smallest \mathbf{x}_j belonging to I. To find the interval $(\mathbf{x}_i,\mathbf{x}_{i+1})$ containing a given \mathbf{x} we simply calculate the entry E of T corresponding to \mathbf{x} , and perform a binary search in the subrange $(\mathbf{x}_i,\mathbf{x}_k)$ of $(\mathbf{x}_1,\mathbf{x}_n)$ indicated by E.

To analyze the expected performance of this scheme, we can reason as follows. The number of \mathbf{x}_j expected to fall into each of the subranges I into which we divide the full range $(\mathbf{x}_1, \mathbf{x}_n)$ is α , so that,

assuming that α is small, the probability p_j that j items actually fall into I will be Poissonian with expectation α , i.e. $p_j = e^{-\alpha} \alpha^j / j!$ If we enter an interval containing j items to do a binary search, $0(1+\log j)$ time will be required for the search. Thus the expected searching time is $0(1) + 0(e^{-\alpha} \sum_{j \geq 2} \alpha^j \log j/j!)$. The following is a table of this last function:

Value of α	Value of $e^{-\alpha} \sum_{j=1}^{\infty} \alpha^{j} \log j/j!$
1	•22
2	. 57
4	1.20

This technique can be used in the 'find matching corner' step of the closest point algorithm sketched earlier, and, assuming a random distribution of angles parallel to the sides of the polygons involved, will reduce the expected time needed to find this corner to O(1); thus the expected time required for the whole algorithm is $O(\log N)$ rather than $O(\log^2 N)$.

Bibliography

- I. Najfeld [1978] Analytic design of compensators and computational geometry. Ph.D. Thesis, Brown University, Providence, RI.
- M. Shamos [1975] Problems in computational geometry (first revision), Informally distributed lecture notes, Carnegie-Mellon University, Pittsburgh, PA.